On the Content Bound for Real Quadratic Field Extensions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Content Bound for Real Quadratic Field Extensions

Let K be a finite extension of Q and let S = {ν} denote the collection of normalized absolute values on K. Let V + K denote the additive group of adeles over K and let c : V + K → R≥0 denote the content map defined as c({aν}) = ∏ ν∈S ν(aν) for {aν} ∈ V + K . A classical result of J. W. S. Cassels states that there is a constant c > 0 depending only on the field K with the following property: if...

متن کامل

An Upper Bound on the Least Inert Prime in a Real Quadratic Field

It is shown by a combination of analytic and computational techniques that for any positive fundamental discriminant D > 3705, there is always at least one prime p < p D=2 such that the Kronecker symbol (D=p) = ?1.

متن کامل

Quadratic extensions of totally real quintic fields

In this work, we establish lists for each signature of tenth degree number fields containing a totally real quintic subfield and of discriminant less than 1013 in absolute value. For each field in the list we give its discriminant, the discriminant of its subfield, a relative polynomial generating the field over one of its subfields, the corresponding polynomial over Q, and the Galois group of ...

متن کامل

Spreads of Right Quadratic Skew Field Extensions

~ ABSTRACT. Let L/K be a right quadratic (skew) field extension and let P be a 3-dimensional projective space over K which is embedded in a 3dimensional projective space P over L. Moreover let I be a line of P which ~ carries no point of P. The main result is that even when L or K is a skew ~ field the following holds true: A desarguesian spread of P is given by the ~ ~ set of all lines of P wh...

متن کامل

REAL QUADRATIC EXTENSIONS OF THE RATIONAL FUNCTION FIELD IN CHARACTERISTIC TWO by

— We consider real quadratic extensions of the rational field over a finite field of characteristic two. After recalling the equation of such extensions, we present a geometric approach of the continued fraction expansion algorithm to compute the regulator. Finally, we study the ideal class number one problem and give numerous examples for which the ideal class number equals one. Résumé (Extens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Axioms

سال: 2012

ISSN: 2075-1680

DOI: 10.3390/axioms2010001